

Endohedrally Metal-Doped Heterofullerenes: $\text{La}@\text{C}_{81}\text{N}$ and $\text{La}_2@\text{C}_{79}\text{N}$

Takeshi Akasaka,^{*†,††} Shingo Okubo,[†] Takatsugu Wakahara,[†] Kazunori Yamamoto,^{†††} Kaoru Kobayashi,^{††††} Shigeru Nagase,^{*††††} Tatsuhisa Kato,^{††} Masahiro Kako,^{†††††} Yasuhiro Nakadaira,^{†††††} Yoshie Kitayama,[†] and Kenji Matsuura^{††††††}

[†]Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata 950-2181

^{††}Institute for Molecular Science, Myodaiji, Okazaki 444-8585

^{†††}Tokai Works, Power Reactor and Nuclear Fuel Development Corporation, Tokai, Ibaraki 319-1100

^{††††}Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397

^{†††††}Department of Applied Physics and Chemistry, The University of Electro-Communications, Chofu, Tokyo 182-8585

^{††††††}JEOL Co. Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-0021

(Received May 17, 1999; CL-990385)

The first evidence of the gas-phase formation of endohedrally La-doped azafullerene ions $\text{La}@\text{C}_{81}\text{N}^+$ and $\text{La}_2@\text{C}_{79}\text{N}^+$ was obtained by the fast atom bombardment mass (FABMS) fragmentation of the adducts, $\text{La}@\text{C}_{82}(\text{NCH}_2\text{Ph})$ and $\text{La}_2@\text{C}_{80}(\text{NCH}_2\text{Ph})$.

Much interest is currently directed toward the variation of the chemical and physical properties of fullerenes to extend the applications. For this purpose, there are two interesting methods: encapsulation of metal atoms inside the carbon cages (endohedral metallofullerenes) and substitution of one or more cage carbons by heteroatoms (heterofullerenes). As the examples of endohedral doping, lanthanide fullerenes such as $\text{La}@\text{C}_{82}$ and $\text{La}_2@\text{C}_{80}$ have been most extensively investigated, these having significantly different electronic properties^{1,2} and reactivities³ (compared with empty fullerenes) owing to electron transfer from metals to fullerene cages, unlike the encapsulation of noble gas atoms.⁴ Considerable progress has been also made for substitutional doping. Most interesting is the recent efficient formation of azafullerene ions such as C_{59}N^+ and C_{69}N^+ .⁵⁻⁷ Since the resultant C_{59}N and C_{69}N radicals are highly reactive, only the dimers or derivatives have been isolated and their properties have been characterized.^{5,8} It is an interesting challenge to prepare a new class of fullerene molecules whose properties are enhanced by a combination of endohedral and substitutional doping.

We now report the first evidence of the formation of La-doped azafullerene ions $\text{La}@\text{C}_{81}\text{N}^+$ and $\text{La}_2@\text{C}_{79}\text{N}^+$. We have found that these ions are efficiently formed by fast atom bombardment mass (FABMS) fragmentation of the adducts afforded from chromatographic separation (Buckyprep column; toluene as eluent) of the reaction mixture of benzyl azide with $\text{La}@\text{C}_{82}$ and $\text{La}_2@\text{C}_{80}$ at 170 °C.

The FABMS spectrum of $\text{La}@\text{C}_{82}$ itself is shown in Figure 1a which has a parent peak at $m/z = 1123$. As Figure 1b shows, the FABMS fragmentation of the adduct ($\text{La}@\text{C}_{82}(\text{NCH}_2\text{Ph})$)⁹ of $\text{La}@\text{C}_{82}$ and benzyl azide provides an increased peak at $m/z = 1125$. A high-resolution measurement of the peak at $m/z = 1124.9071$ agrees with the theoretical value of 1124.9094 for $\text{La}@\text{C}_{81}\text{N}^+$. Information of ^{13}C abundance in mass peaks is useful.⁵ The increased signal at mass 1125 in Figure 1b is composed of a signal from $\text{La}@\text{C}_{80}^{13}\text{C}_2^+$ and a signal from $\text{La}@\text{C}_{81}^{14}\text{N}_1^+$. Based on the isotope distribution, the relative ratio of $\text{La}@\text{C}_{82}^+$ and $\text{La}@\text{C}_{81}\text{N}^+$ was calculated as 1: 0.6, the intensity of $\text{La}@\text{C}_{81}\text{N}^+$ increasing in the desired mass region. The formation of $\text{La}@\text{C}_{81}\text{N}^+$ is also reflected in the "shrink-

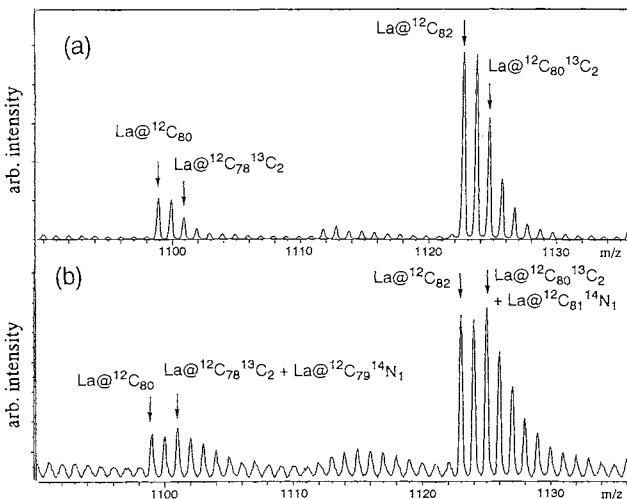


Figure 1. FABMS fragmentation spectra (from 1090 to 1135 amu) of (a) $\text{La}@\text{C}_{82}$ and (b) $\text{La}@\text{C}_{82}(\text{NCH}_2\text{Ph})$.

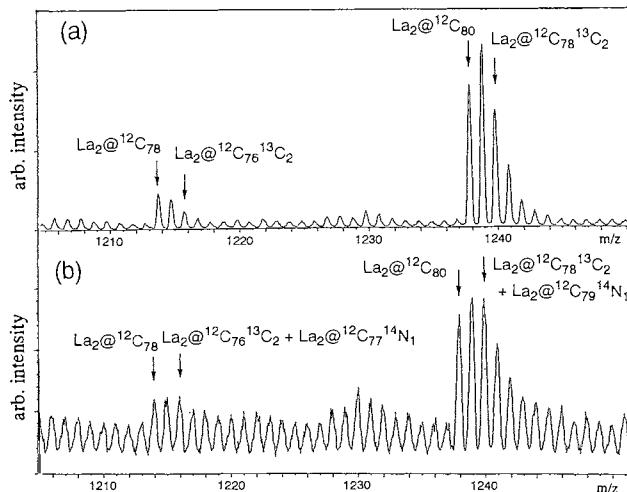


Figure 2. FABMS fragmentation spectra (from 1205 to 1250 amu) of (a) $\text{La}_2@\text{C}_{80}$ and (b) $\text{La}_2@\text{C}_{80}(\text{NCH}_2\text{Ph})$.

"wrap" fragmentation pattern with a peak at $m/z = 1101$ in Figure 1b due to the loss of a C_2 unit ($m/z = 24$). Although successive loss of C_2 units is observed for C_{60} ,¹⁰ there is a marked difference in the shrink-wrapping between C_{59}N^+ and $\text{La}@\text{C}_{81}\text{N}^+$. Whereas C_{59}N^+ first loses exclusively a CN unit

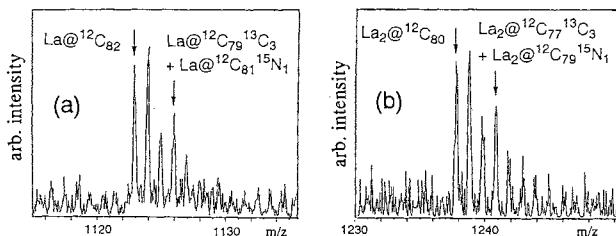


Figure 3. FABMS fragmentation spectra (a) $\text{La}@\text{C}_{82}^{15}\text{NCH}_2\text{Ph}$ from 1115 to 1135 amu and (b) $\text{La}_2@\text{C}_{80}^{15}\text{NCH}_2\text{Ph}$ from 1230 to 1250 amu.

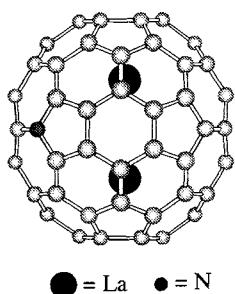


Figure 4. The optimized structure of $\text{La}_2@\text{C}_{79}\text{N}$.

and then C_2 units,⁵ $\text{La}@\text{C}_{81}\text{N}^+$ loses C_2 units (down to $\text{La}@\text{C}_{75}\text{N}^+$). This difference is ascribed to the variation of the bond strengths due to La-doping. Shrink-wrapping is a high energy process (>40 eV) that can make all exohedrally bound groups removed first.^{10b} Therefore, it is unlikely that the peaks at 1125 and 1101 are due to exohedral metallofullerene derivatives such as dihydro-metallofullerenes. As Figure 2 shows, $\text{La}_2@\text{C}_{79}\text{N}^+$ is formed by the FABMS fragmentation of the adduct ($\text{La}_2@\text{C}_{80}(\text{NCH}_2\text{Ph})^9$) of $\text{La}_2@\text{C}_{80}$ and benzyl azide and the relative ratio of $\text{La}_2@\text{C}_{80}^+$ and $\text{La}_2@\text{C}_{79}\text{N}^+$ is 1: 0.65, as in the case of $\text{La}@\text{C}_{82}$.

To further confirm the formation of $\text{La}@\text{C}_{81}\text{N}^+$ and $\text{La}_2@\text{C}_{79}\text{N}^+$, we prepared a 99% ^{15}N -labeled benzyl azide ($\text{PhCH}_2^{15}\text{NNN}$). Figures 3a and 3b show the FABMS fragmentation spectra of the adducts of the ^{15}N -labeled benzyl azide with $\text{La}@\text{C}_{82}$ and $\text{La}_2@\text{C}_{80}$, respectively. Like the unlabeled cases in Figures 1b and 2b, the intense fragmentation signals are due to $\text{La}@\text{C}_{79}^{13}\text{C}_3^+$ and $\text{La}@\text{C}_{81}^{15}\text{N}^+$ for $m/z = 1126$, and $\text{La}_2@\text{C}_{77}^{13}\text{C}_3^+$ and $\text{La}_2@\text{C}_{79}^{15}\text{N}^+$ for $m/z = 1241$, respectively.

$\text{La}_2@\text{C}_{79}\text{N}^+$ and $\text{La}@\text{C}_{81}\text{N}^+$ are isoelectronic with $\text{La}_2@\text{C}_{80}$ and $\text{La}@\text{C}_{82}$, respectively. Ab initio calculations¹¹ of $\text{La}_2@\text{C}_{79}\text{N}^+$ show that almost all three valence electrons are transferred from each La ($5\text{d}16\text{s}^2$) to the LUMO, LUMO + 1, and LUMO + 2 of the azafullerene cage, as in $\text{La}_2@\text{C}_{80}$.¹² Consequently, $\text{La}_2@\text{C}_{79}\text{N}^+$ has a closed shell electronic structure. Acceptance of an electron leads to the $\text{La}_2@\text{C}_{79}\text{N}$ radical. However, it is noteworthy that the electron is not distributed on the cage surface but localized on each La with a spin density of 0.5; two La atoms serve as a spin-absorbent. The most stable optimized structure of $\text{La}_2@\text{C}_{79}\text{N}$ is shown in Figure

4, which has C_s symmetry. The La - La distance of 3.585 Å is shorter than those of 3.655 and 3.622 Å for $\text{La}_2@\text{C}_{80}^{12}$ and $\text{La}_2@\text{C}_{79}^{12}$, respectively, as a result of the acceptance of an electron into the La - La bonding orbital and the decreased positive charge on La. In $\text{La}_2@\text{C}_{79}\text{N}$ the nitrogen atom occupies the position which is 4.518 Å away from each La. On the other hand, three electrons are transferred in $\text{La}@\text{C}_{81}\text{N}^+$ from La to the LUMO and LUMO + 1 of the azafullerene cage, as in $\text{La}@\text{C}_{82}$.¹³ However, the singly occupied LUMO + 1 level is filled up in $\text{La}@\text{C}_{81}\text{N}$ by accepting an electron. Therefore, the cage atoms in both $\text{La}_2@\text{C}_{79}\text{N}$ and $\text{La}@\text{C}_{81}\text{N}$ have no significant radical character. This is in sharp contrast with the high spin localization onto the carbons near nitrogen in C_{59}N and C_{69}N which leads to facile dimerization and abstraction.^{5,8}

On the basis of the unique stability and properties, we are currently working on the synthesis and isolation of $\text{La}@\text{C}_{81}\text{N}$ and $\text{La}_2@\text{C}_{79}\text{N}$ in macroscopic amounts to develop a new class of cage molecules promising for material applications.

This work was supported in part by the REIMEI Research Resources of Japan Atomic Energy Research Institute and by a Grant-in-Aid from the Ministry of Education, Science, Sports, and Culture of Japan.

References and Notes

- For recent reviews, a) S. Nagase, K. Kobayashi, and T. Akasaka, *Bull. Chem. Soc. Jpn.*, **69**, 2139 (1996). b) S. Nagase, K. Kobayashi, and T. Akasaka, *J. Comput. Chem.*, **19**, 232 (1998).
- a) T. Suzuki, Y. Maruyama, T. Kato, K. Kikuchi, and Y. Achiba, *J. Am. Chem. Soc.*, **115**, 11006 (1993). b) T. Suzuki, Y. Maruyama, T. Kato, K. Kikuchi, Y. Nakao, Y. Achiba, K. Kobayashi, and S. Nagase, *Angew. Chem., Int. Ed. Engl.*, **34**, 1094 (1995). c) T. Akasaka, S. Nagase, K. Kobayashi, M. Wälchli, K. Yamamoto, H. Funasaka, M. Kako, T. Hoshino, and T. Erata, *Angew. Chem., Int. Ed. Engl.*, **36**, 1643 (1997).
- a) T. Akasaka, T. Kato, K. Kobayashi, S. Nagase, K. Yamamoto, H. Funasaka, and T. Takahashi, *Nature*, **374**, 600 (1995). b) T. Akasaka, S. Nagase, K. Kobayashi, T. Suzuki, T. Kato, K. Kikuchi, Y. Achiba, K. Yamamoto, H. Funasaka, and T. Takahashi, *Angew. Chem., Int. Ed. Engl.*, **34**, 2139 (1995).
- M. Saunders, R. J. Cross, H. A. Jimenez-Vazquez, R. Shimshi, and A. Khong, *Science*, **271**, 1693 (1996).
- J. C. Hummelen, B. Knight, J. Pavlovich, R. Gonzalez, and F. Wudl, *Science*, **269**, 1554 (1995).
- I. Lamparth, B. Nuber, G. Schick, A. Skiebe, T. Grösser, and A. Hirsch, *Angew. Chem., Int. Ed. Engl.*, **34**, 2257 (1995).
- J. Averdung, H. Luftmann, I. Schlachter, and J. Mattey, *Tetrahedron*, **51**, 6977 (1995).
- a) B. Nuber and A. Hirsch, *J. Chem. Soc., Chem. Commun.*, **1996**, 1421. b) C. Bellavia-Lund, M. Keshavarz-K, T. Collins, and F. Wudl, *J. Am. Chem. Soc.*, **119**, 8101 (1997). c) A. Gruss, K. -P. Dinse, A. Hirsch, B. Nuber, and U. Reuther, *J. Am. Chem. Soc.*, **119**, 8728 (1997).
- The formation of the adduct was confirmed by means of FABMS analysis.
- a) S. C. O'Brien, J. R. Heath, R. F. Curl, and R. E. Smalley, *J. Chem. Phys.*, **88**, 220 (1998). b) H. Schwarz, T. Weisker, and D. Böhme, in "Buckminsterfullerenes," ed by W. E. Billups and M. A. Ciufolini, VCH, Weinheim (1993).
- Geometries were optimized at the Hartree-Fock (HF) level by using the Gaussian 94 program, with the relativistic effective core potential and contracted [5s5p3d]/[4s4p3d] basis set on La^a and split-valence 3-21G basis set on C and N.^b a) P. J. Hay and W. R. Wadt, *J. Chem. Phys.*, **82**, 299 (1985). b) J. S. Binkley, J. A. Pople, and W. J. Hehre, *J. Am. Chem. Soc.*, **102**, 939 (1980).
- a) K. Kobayashi, S. Nagase, and T. Akasaka, *Chem. Phys. Lett.*, **245**, 230 (1995). b) K. Kobayashi and S. Nagase, *Chem. Phys. Lett.*, **262**, 227 (1996).
- K. Kobayashi and S. Nagase, *Chem. Phys. Lett.*, **282**, 325 (1998).